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A new moment method for the modelling of polydisperse sprays is proposed that simultaneously takes
into account the dispersion in droplet size and droplet velocity. For the derivation of this Eulerian method
the kinetic spray equation is used which constitutes a partial differential equation for the probability den-
sity function of droplets. To reduce the complex kinetic spray equation to a form that can be managed
with the available numerical procedures, moment transforms with respect to the droplet velocity and
the droplet size are conducted. The resulting moment equations are closed by choosing an approximate
probability density function which applies to polydisperse sprays. The method is successfully tested for
configurations in which a polydisperse spray is either splashed, evaporated or effected by a Stokes drag
force. The tests are organised in such a way that crossing of two spray distributions is always included.
The new method is able to capture the polydisperse nature of sprays as well as the bi-(or multi-) modal
character of the droplet velocity distribution function, for example, when droplets cross each other.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction 2003; Riber et al., 2009; and Desjardins et al., 2008; Fox, 2008,
It is widely accepted that there is an urgent demand to limit
pollutant emissions and reduce fuel consumption in the combus-
tion of carbon fuels. One step to achieve these objectives is the
optimisation of existing combustion technologies, the most com-
mon being direct injecting diesel, spark ignition and aeroplane en-
gines. In these the liquid fuel is injected into the combustion
chamber where it atomises and forms a spray that evaporates.
The behaviour of the spray has a strong influence on the mixing
process between oxidiser and fuel, which determines the ignition
and burning processes that follow. Still, these complex processes
and their interactions are not completely understood (cf. Merker
et al., 2006). In addition, correlations between combustion engine
tuning parameters needed for engine design can only be predicted
with expensive and time-consuming experiments. Only recently,
with the extensive use of computer resources, has the develop-
ment of new and efficient combustion technologies been acceler-
ated using methodologies of computational fluid dynamics (CFD)
(cf. Boileau et al., 2008). These methodologies are not mature, i.e.
there is still room for improvement in speed, reliability and accu-
racy, particularly for the prediction of the highly unsteady spray
behaviour in combustion chambers. The description of the unstea-
dy fuel spray in combustion engines is either computationally very
expensive or too complex for the existing CFD-tools (cf. Ham et al.,
ll rights reserved.
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respectively). One example is the lean combustion technology in
new aeroplane engines which reduces the NOx emission. Combus-
tion instabilities are more likely to occur in this technology and
hence, steady RANS simulations have to be replaced by unsteady
LES calculations in order to predict the behaviour of the reactive,
two-phase flow system. This challenging task will be the subject
of intensive research for years to come.

The two main approaches classically used to describe the gas-
spray behaviour are the Euler–Lagrange and the Euler–Euler meth-
od. The spray part of these methods is summarised and briefly
discussed.

The Lagrangian procedure (cf. Rueger et al., 2000; Crowe et al.,
1998; O’Rourke, 1981; Dukowicz, 1980), also called the particle
stochastic method, treats the kinetic spray equation by solving
the motion of a large number of numerical particles (parcels) in a
space equipped with variables of time, position and droplet veloc-
ity, size and temperature or other relevant quantities. The mean
spray properties, e.g. for the droplet velocity and mass transfer,
at position x and time t, which are needed for the coupling with
the gas phase, are obtained by averaging over a representative
sample of parcels that cross a defined volume around x within a
certain time interval including t.

The choice of the sample size is a trade off between spatial and
temporal resolution, computational costs and accuracy of the solu-
tion. Lagrange computation with small sample volumes and short
time intervals with a large number of parcels allow the detailed
prediction of an unsteady, polydisperse spray flow. However, the
computational costs increase with the number of parcels.
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Another problematic issue in the simulation of unsteady spray
flows with Euler–Lagrange methods is the choice of the injection
frequency of new numerical particles. One has to make sure that
the numerical results do not depend on this parameter.

It was observed by Riber et al. (2009) that the speedup of the
Euler–Lagrange method with increasing number of processors is
not perfect and it strongly depends on the type of computational
grid (hexahedron-based or tetrahedron-based). They show that
the drop of performance is not due to large communication costs
but originate from the parallel load imbalance generated by the
partitioning algorithm. Riber et al. (2009) use the unsteady test
configuration of Borée et al. (2001) to compare their Euler–La-
grange computations to experimental measurements for moderate
mass loadings. They report that the overall CPU and memory
requirements for high-accuracy computations of the particle phase
is less than the large eddy (LES) gas computations, indicating that
with larger mass loadings the computational costs increase.

By describing the dispersed phase with an Eulerian method, bal-
ance equations for various density fields of physical droplet quan-
tities are solved at each position and time (cf. Février et al., 2005;
Drew and Passman, 1999; Passman et al., 1984). This procedure
has the advantage that, irrespective of the amount of droplets in
a region, the same number of equations always have to be solved;
hence in Euler–Euler computations a cost is added for the dis-
persed phase which is independent of the mass loading. Moreover,
the solver of both phases can be parallelised with the same strat-
egy (cf. Riber et al., 2009). In consideration of these issues, it is ex-
pected and also shown by Riber et al. (2009) that the speedup of
the particle phase computation behaves equally well as the speed-
up of the gas phase computation.

From the above properties of Euler–Lagrange and Euler–Euler
methods it is expected that Euler–Euler methods could be a good
alternative for spray LES computations, in particular for computa-
tions for dense and unsteady particle flows using massively paral-
lelised computers. Of course, this body of research can only be a
first stage in the development of a new Euler–Euler method. That
is why it is too early to compare the computational costs of the
proposed method to other more advanced approaches, in particu-
lar because the test cases considered in this paper are too aca-
demic. Advantages of such an approach can only be examined in
large 3D unsteady computations. In a first stage the new method
has to be assessed in simpler configurations, as is done in this
paper.

The Eulerian description of dispersed particles has certain prin-
ciple limitations. By using a two fluid model (cf. Février et al., 2005;
Kaufmann, 2004; Groll, 2002), for example, the polydisperse char-
acter of the spray can only be captured in a very crude manner, be-
cause only two superposed and coupled sets of Navier–Stokes-like
equations for the gas and the droplet phase are considered. The
shape of the droplet distribution has to be presumed beforehand,
which excludes the description of coalescence and breakup. There
are several Eulerian approaches available in the literature for the
consideration of the polydisperse character using a kinetic spray
equation. These are the methods of moments (cf. Grosch et al.,
2007), the class or sectional methods (cf. Vanni, 2000; Sirignano,
1999), the methods of characteristics (cf. Rhee et al., 2001), the
methods of weighted residual (cf. Costa et al., 2006) and the meth-
od of Laplace transforms (cf. Ghosal and Herrmann, 2006), to men-
tion the most common approaches. Here, a method is used which
was developed by Gelbard et al. (1980), Domelevo (2001), Laurent
and Massot (2001), Laurent et al. (2004), and Dufour and Villedieu
(2005). In this approach, hereafter called sectional method, the size
space is discretised into fixed intervals, in which balance equations
for lower order moments in size for each interval are solved. This
treatment of the kinetic spray equation allows for the accurate pre-
diction of evaporation, drag, breakage and coalescence of sprays.
There is a variety of other approaches which are based on the dis-
cretisation of the size space. For an overview and a detailed com-
parison of these methods (including the sectional method) the
reader is referred to Vanni (2000) and Grosch et al. (2007).

The sectional method as well as all other Eulerian methods that
were developed to treat the spray in size space are not capable of
describing the dispersion of droplet velocities at one location.
However, this is necessary to capture the crossing of two dilute
sprays arising in turbulent spray flows, for example. Recently, Des-
jardins et al. (2008) (see also Fox, 2008) proposed a quadrature-
based moment method (cf. Marchisio and Fox, 2005; Fox et al.,
2008, for quadrature methods) that overcomes this drawback by
solving balance equations not only for the number, mass and
momentum densities but also for the kinetic energy and other
higher order moments of the (droplet) number density function
(NDF). This method is able to describe the crossing of sprays but
it does not take into account the polydisperse character of sprays.

A combination of the sectional method developed by Dufour
and Villedieu (2005) and the quadrature method of Desjardins
et al. (2008) is the subject of this paper. The objective is to merge
both procedures in a way that allows the resulting method to de-
scribe the polydisperse nature of sprays as well as the coexistence
of two or more droplet velocities at one location. To this end, a new
and more general approximate NDF is proposed that reduces to the
approximation of Dufour and Villedieu (2005) and Desjardins et al.
(2008) if special sets of parameters are chosen.

The paper is organised in the following way. After introducing
the kinetic description of polydisperse sprays in Section 2, moment
transport equations are derived for fixed intervals in size space
(Section 3). In Section 4 the idea of Desjardins et al. (2008) is fol-
lowed and combined with the propositions of Dufour and Villedieu
(2005). It is shown that the parameters of the new approximate
NDF are uniquely determined by the chosen moments of the exact
NDF, a necessary condition for the accuracy of this method. Section
5 is devoted to the numerical procedures that are applied to solve
the moment transport equations. These are the Strang splitting in
time and the transport schemes in real and size space. In Section
6 the new method is compared to ‘reference’ Lagrangian calcula-
tions to appraise its capabilities. Three cases are tested. The meth-
od is applied first to a configuration where droplets are reflected on
a wall but break and lose mass and momentum (called splashing).
Secondly, the method is tested in a one-dimensional setting of two
crossing spray distributions that evaporate according to a d2-law.
In a third test case two sprays cross each other but are affected
by a Stokes drag force. Conclusions are drawn in Section 7.
2. Kinetic description of polydisperse sprays

Similar to the description of molecules in the kinetic gas theory
(cf. Boltzmann, 1898; Cercignani, 1988), Williams (1958) proposed
the following type of equation to model the behaviour of spray
systems,

@f
@t
þrx � ðvf Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ðIÞ

þrv � ðFf Þ|fflfflfflfflffl{zfflfflfflfflffl}
ðIIÞ

þrsðKf Þ|fflfflfflffl{zfflfflfflffl}
ðIIIÞ

þrhðRf Þ|fflfflfflffl{zfflfflfflffl}
ðIVÞ

¼ Cðf Þ þHðf Þ: ð1Þ

In this equation, f is a function of time t, space x, droplet velocity v, a
scalar that characterises the droplet size s and the droplet temper-
ature h. It is physically interpreted as number of droplets per infin-
itesimal volume ½x; xþ dx� � ½v;v þ dv � � ½s; sþ ds� � ½h; hþ dh� and
is therefore called number density function (NDF). In (1), (I) repre-
sents the free transport of a droplet with velocity v, (II) includes the
net force F that affects a droplet, (III) accounts for the continuous
change of the droplet size and (IV) reflects the temperature change
of a droplet. C and H allow for the consideration of discontinuous



1 Applying the moment transform in surface space in the described way, a
transport scheme in surface space is derived which is similar to the finite volume
scheme in real space ðt; xÞ (Section 5).
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interactions between the droplets, i.e. the breakage of one droplet
into several others or inversely their collision and coalescence.
The quantities F, K and R take into account the interaction with
the gaseous phase and have to be modelled. Here, the focus is not
on the thermodynamic behaviour of the droplets, but rather on
the robustness of the new method, introduced in Sections 4 and
5, under the influence of splashing, evaporation, drag and crossing
of dilute spray distributions. Therefore, the dependence of f on h
is omitted and the effects of droplet collision and coalescence as-
sumed to be absent, i.e. R, C and H are set to zero. In addition, only
forces on the droplets of the type

F ¼ Ugðt;xÞ � v
sdðs;vÞ

; ð2Þ

which excludes gravity, buoyancy and other, more subtle forces are
considered. The above drag force model (2) includes the velocity
difference between a droplet and the gas, ðUg � vÞ, and the relaxa-
tion time of the droplets in the surrounding gas, sd. The latter quan-
tity can generally be modelled by the Stokes law (cf. Crowe et al.,
1998) or laws for more elevated droplet Reynolds numbers (cf. Put-
nam, 1961).

In this work the evaporation is modelled by a simple d2-law and
the size variable s is identified with the surface area of a droplet.
The d2-law allows K to be constant. It also implies that the non-
symmetric effect of the evaporation which results from the veloc-
ity difference between droplets and gas is not taken into account
(cf. Abramzon and Sirignano, 1989).

These models and the assumptions that go with them are cho-
sen for clarity reasons. If these assumptions are softened or
dropped by using more complex models the moment method,
introduced below, remains valid as long as Eq. (1) is the basis of
these models and no history terms are taken into account (cf. Lau-
rent and Massot, 2001; Laurent et al., 2004).

In the remainder of this paper the following one-dimensional
version of Eq. (1) is dealt with,

@ðf ðt; x; s;vÞÞ
@t

þ @ðvf ðt; x; s; vÞÞ
@x

þ @

@v
Ugðt; xÞ � v

Stðs; vÞ f
� �

� Ev
@ðf ðt; x; s;vÞÞ

@s
¼ 0; ð3Þ

in which all quantities are disposed of their units. For the definition
of the Stokes number, Stðs; vÞ :¼ sd=sg and the evaporation number
Ev :¼ sg=sevap the characteristic time scales for the gas flow, sg and
for the evaporation, sevap ¼ �S�=K are used. The characteristic sur-
face area S� and the time scale sg have to be adapted to the specific
spray problem. In the setting of Eq. (3), S� may be chosen as the sur-
face of the largest initial droplet. The choice of the time scale, sg , de-
pends on the properties of the gas flow. For a turbulent flow, a
characteristic integral time scale can be selected, whereas in a lam-
inar flow the ratio of a characteristic length and velocity scale may
be appropriate.

The extension of the moment method, presented in this paper,
to higher dimensions requires some more considerations. The sec-
tional method as well as the quadrature-based moment method
were already extended to two dimensions by Dufour and Villedieu
(2005) and Desjardins et al. (2008), respectively. However, the
combination of the two methods in two dimensions is subject of
current research.

3. Moment transport equations

For the reduced model, the NDF, f, has, apart from its dependen-
cies on x and t, two degrees of freedom, i.e. the surface variable, s,
and the velocity variable, v. The only equation that can be used to
find an expression for f(t,x,s,v) is the reduced spray Eq. (3). In this
work, the aim is not to solve for the NDF explicitly but only for cer-
tain moments of it. Therefore, the number of free variables is re-
duced by performing two moment transforms of Eq. (3) with
respect to the velocity and surface space.

The transform with respect to the velocity space leads to equa-
tions for a set of velocity moments that are defined according to

MLðt; x; sÞ :¼
Z

R

vLf ðt; x; s; vÞdv: ð4Þ

There is no restriction on the choice of moments but, as will be
pointed out below, the set

U :¼ M0;M1;M2;M3f g 2 R4 ð5Þ

allows for a convincing physical interpretation. The moment trans-
form consists of two mathematical operations that are applied con-
secutively to the spray Eq. (3). First, (3) is multiplied by the
respective powers of the velocity variable and then, the emerging
equations are integrated over the set R of all possible velocities. This
procedure yields, after some algebra,

d
dt
ðM0Þ � Ev

@

@s
ðM0Þ ¼ 0;

d
dt
ðM1Þ � Ev

@

@s
ðM1Þ ¼

Z
R

Ug � v
Stðv ; sÞ

� �
f dv ;

d
dt
ðM2Þ � Ev

@

@s
ðM2Þ ¼ 2

Z
R

v Ug � v
Stðv ; sÞ

� �
f dv;

d
dt
ðM3Þ � Ev

@

@s
ðM3Þ ¼ 3

Z
R

v2 Ug � v
Stðv ; sÞ

� �
f dv ;

ð6Þ

where the material time derivative (cf. Hutter and Jöhnk, 2004)

dðMLÞ
dt

:¼ @

@t
ðMLÞ þ

@

@x
ðMLþ1Þ ð7Þ

is introduced. For the derivation of the integrals on the right-hand
side (RHS) of system (6) it is assumed that in velocity space the
NDF declines rapidly to zero for large velocity values (e.g.
oðjv j�3Þ). In physical spray systems this assumption is always satis-
fied. It is also of interest that

(i) system (6) is unclosed because an expression for the fourth
moment in (6)4 is missing (see also (7)),

(ii) the integrals on the RHS of system (6) cannot be evaluated
unless a special form for St is considered or the generality
of f is reduced,

(iii) Ugðt; xÞ is assumed to be supplied by some analytical or
numerical solution of the gas flow and

(iv) if it were somehow possible to close the above system and
evaluate the RHS one would still be confronted with a partial
differential equation (PDE) system that exhibits three
degrees of freedom. This problem cannot be treated with
the numerical methods that are commonly used to solve bal-
ance equations in which all fields are functions of space and
time only.

To transform Eq. (6) into the usual form of balance equations
another moment transform with respect to the surface variable,
s, has to be performed. Similar to Laurent and Massot (2001), Lau-
rent et al. (2004) and Dufour and Villedieu (2005), the surface
space [0,1] is split into N fixed intervals, Ik ¼ ½sk; skþ1½2 ½0;1�;
k ¼ 1; . . . N, called sections, which constitute the domains of inte-
gration.1 Every interval is equipped with the set of moments,
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Vk :¼ MðkÞ
0;0;M

ðkÞ
3=2;0;M

ðkÞ
3=2;1;M

ðkÞ
3=2;2;M

ðkÞ
3=2;3

n o
2 R5; ð8Þ

in which the moments are defined according to

MðkÞ
K;Lðt; xÞ :¼

Z skþ1

sk

sK
Z

R

vLf ðt; x; s;vÞdv ds: ð9Þ

It has to be admitted that sets other than (8) are admissible, but the
first four moments in set Vk are the only ones that can be physically
interpreted as normalised number, mass, momentum and kinetic
energy of droplets in section Ik. The last moment in Vk could be re-
lated to the skewness of the NDF in velocity space (cf. Pope, 2000)
but as it is not a standardised moment it is simple called mixed mo-
ment of order 3 in velocity space and order 3/2 in surface space.

The above moment transform of system (6) yields 5N balance
equations. They have the form

d
dt

MðkÞ
0;0

� �
�Ev

Z skþ1

sk

Z
R

@f
@s

dv ds¼0;

d
dt

MðkÞ
3=2;0

� �
�Ev

Z skþ1

sk

Z
R

s3=2 @f
@s

dv ds¼0;

d
dt

MðkÞ
3=2;1

� �
�Ev

Z skþ1

sk

Z
R

s3=2v @f
@s

dv ds¼
Z skþ1

sk

s3=2
Z

R

Ug�v
Stðv ;sÞ

� �
f dv ds;

d
dt

MðkÞ
3=2;2

� �
�Ev

Z skþ1

sk

Z
R

s3=2v2 @f
@s

dv ds¼2
Z skþ1

sk

s3=2
Z

R

v Ug�v
Stðv;sÞ

� �
f dv ds;

d
dt

MðkÞ
3=2;3

� �
�Ev

Z skþ1

sk

Z
R

s3=2v3 @f
@s

dv ds¼3
Z skþ1

sk

s3=2
Z

R

v2 Ug�v
Stðv ;sÞ

� �
f dv ds;

ð10Þ

in each section Ik with k ¼ 1; . . . N.
The number of free variables is reduced (remark (iv)) but for

system (10) the issues in remarks (i) and (ii) remain unsolved.
2 For values of I larger than 2, the distribution in velocity space can be captured
more accurately, i.e. not only bimodal but tri- or multimodal velocity distribution
functions can be described. Choosing a larger value for I leads to an extension of the
set of moments Vk and, consequently, the number of equations in system (14)
increases.
4. Moment closure

For the closure of PDE-system (10) it is misleading to use the
Maxwellian principles of the kinetic gas theory, because, in con-
trast to the motion of a dilute gas, a dilute spray does not satisfy
the conditions of kinetic equilibrium. Nevertheless, it is worth-
while to use Maxwell’s idea of approximating the probability den-
sity function for the gas molecules using an algebraic function that
is physically motivated. In this way the NDF is approximated by

~f ðt; x; s; vÞ ¼
XN

k¼1

XI

i¼1

1sk6s<skþ1
ai

kðt; xÞ expð�bkðt; xÞsÞdv�Ui
kðt;xÞ

; ð11Þ

with

1sk6s<skþ1
¼

1 if sk 6 s 6 skþ1;

0 otherwise:

�
ð12Þ

The set

Wk ¼ bk; a1
k ; . . . ; aI

k;U
1
k ; . . . ;UI

k

h i
; k ¼ 1; . . . ;N ð13Þ

of ð2I þ 1ÞN free parameters will later be related to the moments in
set Vk. Thereby a specific physical meaning will be given to them.
The function ~f does not contradict the polydisperse character of
sprays, nor does it undermine the dispersion of droplet velocities
at one location. The method following from (11) may be regarded
as a generalisation of the sectional method introduced by Gelbard
et al. (1980), Domelevo (2001), Laurent and Massot (2001) and
Laurent et al. (2004) – or more precisely its variant proposed by
Dufour and Villedieu (2005) – and the quadrature method recently
introduced by Desjardins et al. (2008). In the case of I ¼ 1, N > 1 the
sectional method according to Dufour and Villedieu (2005) is
recovered and for N ¼ 1; I > 1 a method similar to that of
Desjardins et al. (2008) is obtained.
The substitution of approximation (11) into the unclosed mo-
ment Eq. (10) yields for every section Ik ðk ¼ 1; . . . N)

d
dt

MðkÞ
0;0

� �
� Ev

Z skþ1

sk

Z
R

@~f
@s

dv ds ¼ 0;

d
dt

MðkÞ
3=2;0

� �
� Ev

Z skþ1

sk

Z
R

s3=2 @
~f
@s

dv ds ¼ 0;

d
dt

MðkÞ
3=2;1

� �
� Ev

Z skþ1

sk

Z
R

s3=2v @
~f
@s

dv ds

¼
Z skþ1

sk

s3=2 expð�bksÞ
XI

i¼1

ai
k

Ug � Ui
k

StðUi
k; sÞ

" #
ds;

d
dt

MðkÞ
3=2;2

� �
� Ev

Z skþ1

sk

Z
R

s3=2v2 @f
@s

dv ds

¼ 2
Z skþ1

sk

s3=2 expð�bksÞ
XI

i¼1

ai
kUi

k
Ug � Ui

k

StðUi
k; sÞ

" #
ds;

d
dt

MðkÞ
3=2;3

� �
� Ev

Z skþ1

sk

Z
R

s3=2v3 @f
@s

dv ds

¼ 3
Z skþ1

sk

s3=2 expð�bksÞ
XI

i¼1

ai
kðU

i
kÞ

2 Ug � Ui
k

StðUi
k; sÞ

" #
ds:

ð14Þ

In each section, ~f is defined by ð1þ 2IÞ parameters, Wk, that have to
be uniquely linked to the set Vk of moments (see (8)). Otherwise, it
cannot be guaranteed that the approximated NDF has the same
lower order moments as the exact NDF. In the case of I ¼ 2,2 the
relations between the moments in Vk and the parameters in Wk

are determined by

MðkÞ
K;L ¼

Z skþ1

sk

sK expð�bksÞ a1
kðU

1
kÞ

L þ a2
kðU

2
kÞ

L
n o

ds; ð15Þ

for ðK; LÞ ¼ ð0;0Þ; ð3=2; 0Þ; ð3=2;1Þ; ð3=2;2Þ; ð3=2;3Þf g. From these
relations it is not obvious that the parameters of ~f given in Wk

can be uniquely determined by the moments in Vk because the
RHS’s of (15) are highly non-linear. The uniqueness and the explicit
formulation of the mapping Vk !Wk is subject to the following
proposition.

Property 1. Let Vk be the set of moments defined in (8) and (9) such
that

ðiÞ MðkÞ
0;0 > 0; ðiiÞ MðkÞ

3=2;2 P
MðkÞ

3=2;1

� �2

MðkÞ
3=2;0

;

ðiiiÞ MðkÞ
3=2;0 > 0; ðivÞ

MðkÞ
3=2;0

MðkÞ
0;0

2 s3=2
k ; s3=2

kþ1

i h
; ð16Þ

then, up to a permutation between subscripts 1 and 2, there exists only
one set Wk of parameters introduced in (11), (13) that satisfies the
relations in (15). This solution is given by the inverse function

bk ¼ g�1
k

MðkÞ
3=2;0

MðkÞ
0;0

 !
with

gkðbÞ :¼

2
5

s5=2
kþ1
�s5=2

kð Þ
jIk j

; b ¼ 0;R skþ1
sk

s
3
2 expð�bksÞdsR skþ1

sk
expð�bksÞds

; b – 0;

8>>><
>>>:

ð17Þ



3 In this paragraph, the index ðkÞ is skipped for clarity reasons. In the fractional step
of transport the scheme derived here is applied to each section Ik independently.

L. Schneider et al. / International Journal of Multiphase Flow 36 (2010) 261–272 265
and the relations

a1
k ¼ ð1=2þ xkÞ MðkÞ

3=2;0

� �
;

a2
k ¼ ð1=2� xkÞ MðkÞ

3=2;0

� �
;

U1
k ¼ Up

k �
a2

k

a1
k

� �1=2

rp
k ;

U2
k ¼ Up

k þ
a1

k

a2
k

� �1=2

rp
k ;

xk ¼
qp

k=2

ðqp
kÞ

2 þ 4ðrp
kÞ

6
� �1=2 :

ð18Þ

The quantities MðkÞ
K;L; Up

k ; rp
k and qp

k are defined by

MðkÞ
K;L ¼

MðkÞ
K;LR skþ1

sk
s

3
2 exp �bksð Þds

;

Up
k ¼

MðkÞ
3=2;1

MðkÞ
3=2;0

;

rp
k ¼

MðkÞ
3=2;0MðkÞ

3=2;2 � MðkÞ
3=2;1

� �2

MðkÞ
3=2;0

� �2

0
B@

1
CA

1=2

;

qp
k ¼

1

MðkÞ
3=2;0

MðkÞ
3=2;3 �MðkÞ

3=2;0ðU
p
kÞ

3
�

�3 MðkÞ
3=2;0

� �
ðrp

kÞ
2Up

k

�
:

ð19Þ

Eqs. (17)–(19) constitute the mapping Vk !Wk.

Note that it was proven by Dufour and Villedieu (2005) that
gkðbÞ (cf. (17)2) is a strictly decreasing function on R with the prop-
erties: limb!�1gkðbÞ ¼ s3=2

kþ1 and limb!þ1gkðbÞ ¼ s3=2
k . Therefore,

using ðivÞ in each section, gk can be inverted and a unique solution
bk can be found from Eq. (17).

Note also, that with the solution for bk, (i), (ii) and (iii), Desjar-
dins et al. (2008) provide the proof that, up to a permutation of
ða1

k ;U
1
kÞ with ða2

k ;U
2
kÞ;Wk is uniquely determined by the set

Vk ¼ MðkÞ
0;0; MðkÞ

3=2;0; MðkÞ
3=2;1; MðkÞ

3=2;2; MðkÞ
3=2;3

n o
of normalised moments.

The Eqs. (17)–(19) are of importance for the evaluation of the
integrals on the RHS of (14) and for the numerical implementation
of the derivatives arising in these equations.

The numerical algorithms used to solve equation system (14)
are presented in the following section. The associated initial and
boundary conditions are specified for the respective test cases in
Section 6.

5. Numerical schemes

As mentioned above, the kinetic spray equation in (3) cannot be
solved with the standard numerical schemes used for the treat-
ment of flow problems because the NDF is a function of more vari-
ables than just position and time. That is why, in the previous
sections, Eq. (3) has been transformed to the system of moment
Eq. (14) that allow the application of the well-known finite volume
method in real space

Nnþ1
i �Nn

i

Dt
¼ 1

Dx
G Nn

i�r;N
n
i�rþ1; . . . ;N

n
iþs

� 	
�G Nn

i�r�1;N
n
i�r ; . . . ;N

n
iþs�1

� 	
 �
:

ð20Þ

and the sectional method (cf. Dufour and Villedieu, 2005) in surface
space

Mnþ1
k �Mn

k

Dt
¼ Pþ 1

jIkj
F Mn

k�q;M
n
k�qþ1; . . . ;Mn

kþl

� �h
�F Mn

k�q�1;M
n
k�q; . . . ;Mn

kþl�1

� �i
: ð21Þ
In these schemes, Nnþ1
i is a general moment in cell

Zi ¼ ½xi; xiþ1� 2 ½0;1� at time tn þ Dt and Mnþ1
k is a general moment

in section Ik at time tn þ Dt � Gð�Þ and Fð�Þ are fluxes through the cell
and section boundaries, respectively, and P represents a source
term coming into play in evaporation. The numerical schemes
(20) and (21) are conservative because, due to their structure, no
piece of Mk or Ni is artificially added or erased during the transport
processes in the respective spaces (cf. LeVeque, 1992).

By using two separate schemes for the surface and real space it
is tacitly assumed that the transport in surface and real space can
be uncoupled. Indeed, there are numerical algorithms available,
called fractional step methods in time, that allow (14) to be split
into less complex subproblems which then can be treated with dif-
ferent numerical schemes (cf. LeVeque, 1992). In this work, equa-
tion system (14) (with I ¼ 2) is divided into the subproblems of
transport in real space, drag and evaporation. These subproblems
are solved in each time step Dt in the following sequence: (i)
Dt=2 transport, (ii) Dt=2 drag, (iii) Dt evaporation, (iv) Dt=2 drag,
(v) Dt=2 transport. This sequence is denoted Strang splitting in
time, for which it was proven (cf. Strang, 1968; Bobylev and Ohw-
ada, 2001) that the accuracy of the overall method remains second
order in all variables if the numerical schemes of each subproblem
are second order in the respective variable. For each of the above
steps the solution of the previous step is used as ‘initial condition’
but for the first fractional step (here transport) the solution of the
previous time-step, the solution at time tn or the initial condition
of the whole problem is taken into account. The solution of the last
step is also the solution of system (14) at time tn þ Dt.

Transport: The mathematical problem of transport in real space

@WðkÞ

@t
þ @HðkÞ

@x
¼ 0

with HðkÞ ¼
Z

R

vKðkÞ
X2

j¼1

aj
kdv�Uj

k

n o
dv

ð22Þ

and

WðkÞ ¼

MðkÞ
0;0

MðkÞ
3=2;0

MðkÞ
3=2;1

MðkÞ
3=2;2

MðkÞ
3=2;3

0
BBBBBBBBB@

1
CCCCCCCCCA
; KðkÞ ¼

EðkÞ0

EðkÞ3=2

EðkÞ3=2v

EðkÞ3=2v2

EðkÞ3=2v3

0
BBBBBBBBB@

1
CCCCCCCCCA
; ð23Þ

supplemented by appropriate initial and boundary conditions can
be regarded as the extension of the pressureless gas equation stud-
ied by Bouchut (1994). It is treated numerically with a finite volume
method, as proposed in Eq. (20). The terms EðkÞM in (23) are defined
according to

EðkÞM ¼
Z siþ1

si

sM expð�bksÞds: ð24Þ

An equidistant discretisation, fx1; . . . ; xJg, of the real line [0,1] is
introduced with x1 ¼ 0 and xJ ¼ 1, where one cell, Zi, has the size
jZij ¼ Dxi ¼ Dx. In the centre of each cell at a fixed time
tn þ Dt;WðkÞ is assumed to have the value Wnþ1

i .3

In this work, a first order scheme for the free transport (r ¼ 0,
s ¼ 1 in (20)) is used which leads to the following expression

Wnþ1
i �Wn

i

Dt
¼ 1

Dx
G Wn

i ; Wn
iþ1

� 	
� G Wn

i�1; Wn
i

� 	
 �
: ð25Þ

The numerical flux function Gð�Þ is derived from (22)–(24) and reads



4 This is most likely the first time splashing of a polydisperse spray has been
captured by an Eulerian procedure. Desjardins et al. (2008) were able to describe
splashing for a monodisperse spray.
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GðWn
i ; Wn

iþ1Þ ¼
Z

R

1
2
ðv þ jvjÞK

X2

l¼1

ðalðtn; xÞdv�Ulðtn ;xÞÞdv

�����
i

þ
Z

R

1
2
ðv � jvjÞK

X2

l¼1

ðalðtn; xÞdv�Ulðtn ;xÞÞdv

�����
iþ1

; ð26Þ

where the operator ð�Þji forces the quantities in brackets to belong to
cell Zi:GðWn

i ; Wn
iþ1Þ can be interpreted as fluxes of the moments in

Wn
i through the right boundary of cell Zi:GðWn

i�1; Wn
i Þ, on the other

hand, are the fluxes through the left boundary of the same cell.
Similar to the proof of Bouchut (1994), it can be shown that the

above scheme is of first order. Here, the scheme in (25) and (26) is
not proven to preserve the realisability conditions (i) to (iv) in (16)
nor is the maximum principle on the velocities addressed. The re-
sults in Section 6 are calculated with the CFL condition

dt <
dx

max
I
ðUI

kÞ
; ð27Þ

and no unphysical negative masses or artificial oscillations were ob-
served. Desjardins et al. (2008) proved that condition (27) is suffi-
cient to satisfy the realisability condition for monodisperse sprays
(similar to conditions (ii) and (iii) in (16)). For the method presented
here, the surface variable is assumed to be fixed during the frac-
tional step of transport in real space, i.e. no transport in surface
space is taking place while the fields are transported in real space.
Therefore, conditions (i) and (iv) in (16) should remain valid during
the transport in real space. The numerical results in Section 6 sup-
port this assumption.

It is believed that the scheme in (25) and (26) can be extended
to higher orders by approximating the fluxes through the bound-
aries with higher order interpolations of Wn at the boundaries
rather than simply using the values at the middle of each cell.
The realisation of this classical MUSCL extension (cf. LeVeque,
1992) has been postponed for future study.

Evaporation: The derivation of the numerical scheme for the
evaporation step commences with the reduced spray equation

@

@t
ðf Þ � Ev

@

@s
ðf Þ ¼ 0; f ðt ¼ tnÞ ¼ fn; ð28Þ

in which only the evaporation term is retained. In this step, it is as-
sumed that f is not changing with respect to x or v. Eq. (28) is a lin-
ear hyperbolic PDE that has the solution f ðs; tÞ ¼ fnðsþ Evðt � tnÞÞ
for all ðs; tÞ > ð0; tnÞ.

The evaporation step can be split into three substeps. First, the
parameters in set Wk are computed from the moments in set Vk at
time tn with the help of the mapping Vk !Wk, as defined in (17)–
(19). Then, by simply introducing the solution of (28) into the def-
inition of moments MðkÞ

K;L (see (9)) at time tn þ Dt, the following
expression

MðkÞ
K;Lðtn þ DtÞ ¼

Z skþ1

sk

sK
Z

R

vLf nðsþ EvDtÞdv ds ð29Þ

is obtained in a section Ik and some fixed cell Zi. If the exact solution
fnðsþ EvDtÞ is replaced by its approximation ~f n

kðsþ EvDtÞ and the
emerging integrals are rearranged, the following scheme is finally
obtained

MðkÞ
K;LðtnþDtÞ�MðkÞ

K;LðtnÞ¼þP1ðkÞK;LðtnÞþP2ðkÞK;LðtnÞ

þ 1
jIkj

FðMðkÞ
K;LðtnÞ;Mðkþ1Þ

K;L ðtnÞÞ
h

�FðMðk�1Þ
K;L ðtnÞ;MðkÞ

K;LðtnÞÞ
i

ð30Þ

for each section Ik and a fixed cell Zi. The functions arising in (30)
are expressed as follows
FðMðkÞ
K;LðtnÞ; Mðkþ1Þ

K;L ðtnÞÞ ¼ jIkþ1j
Z skþ1þEvDt

skþ1

uK

�
Z

R

vL~f ðkþ1Þ
n ðu; vÞdv du ð31Þ

for the fluxes over the section boundaries and

P1ðkÞK;LðtnÞ ¼
Z skþ1

skþEvDt
ðu� EvDtÞK � uK
� �Z

R

~f ðkÞn ðu;vÞdv du

P2ðkÞK;LðtnÞ ¼
Z skþ1þEvDt

skþ1

ðu� EvDtÞK � uK
� �Z

R

~f ðkþ1Þ
n ðu;vÞdv du

ð32Þ

for the source terms of evaporating droplets. It should be noted that
in the case of ðK; LÞ ¼ ð0;0Þ the source terms are identical to zero.
This agrees with the interpretation that in the region s ¼�0; 1� the
number of droplets is not reduced by evaporation. Only at the left
boundary of the first section, I1, droplets vanish and the number
of droplets reduces to zero. For the moments other than
ðK; LÞ ¼ ð0;0Þ the source terms are in general nonzero. For the case
ðK; LÞ ¼ ð3=2;0Þ; P1ðkÞK;L and P2ðkÞK;L are interpreted as loss of mass in
section Ik and in case ðK; LÞ ¼ ð3=2;1Þ as loss of momentum. Similar
interpretations hold for other moments.

It was proven by Dufour and Villedieu (2005) that the scheme in
(30)–(32) is consistent of order 2 in surface space if the sections are
of the same size, and of order 1 if they are not equisized. In addi-
tion, it was demonstrated by Dufour and Villedieu (2005) that
the moments ðK; LÞ ¼ ð0;0Þ and ðK; LÞ ¼ ð3=2;0Þ, i.e. the number
and mass of droplets in a section, remain bounded and positive
for all times t 2 ½0; T� if the CFL condition EvDt 6 jIkj is satisfied.
The same condition is used to prove that the maximum principle
on the ratio MðkÞ

3=2;0=MðkÞ
0;0 is satisfied. The latter property is necessary

to ensure condition (iv) in (16). It is assumed that the maximum
principle on the velocities is satisfied because in the fractional step
of transport in surface space, the velocity variable is fixed, i.e. no
transport is taking place in real space.

Drag: In the fractional step of drag, the equation system

@

@t
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0;0

� �
¼ 0;
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� �
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k

Ug � Ui
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" #
ds;
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Z skþ1
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Ek
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kUi

k
Ug � Ui
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StðUi
k; sÞ

" #
ds;

@
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3=2;3

� �
¼ 3

Z skþ1

sk

Ek

XI

i¼1

ai
kðU

i
kÞ

2 Ug � Ui
k

StðUi
k; sÞ

" #
ds;

ð33Þ

is taken into account for each of the N sections Ik and for each of the
J cells Zi. Here, Ek is an abbreviation for s3=2 expð�bksÞ. The differen-
tial equations in (33) are highly coupled and also show a strong
non-linearity behaviour because the parameters on the RHS are re-
lated to the moments on the left-hand side via the non-linear map-
ping Vk !Wk. Nonetheless, a second order Runge–Kutta
procedure is applied that assumes the RHS to be computed at time
tn or at the previous Runge–Kutta step.

6. Applications and results

To test the ability of the method outlined in Sections 3–5, it was
applied to three simplified spray problems that change the spray
distribution in surface space, first through splashing,4 second
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through evaporation, and third through a size-dependent Stokes
drag force. All test cases were organised in such a way that crossing
of two spray distributions was included. Solutions to the same test
cases were also computed using a Lagrangian method. They are re-
garded as accurate reference solutions. The numerical algorithms
for the Eulerian method were explained in Section 5. For the
Lagrangian method simple implementations of the method pre-
sented in Crowe et al. (1998) were used. The models for evaporation,
splashing and drag were incorporated into the Lagrangian code with-
out any cut back.

6.1. Test case: splashing of polydisperse spray

When droplets hit a wall, break and rebound with a certain
velocity and size, they are said to splash on that wall. So far, it
has not been possible to capture this phenomenon with Eulerian
methods, because they assume that locally the velocity of a droplet
is tied to its size and its position. This assumption does not hold for
splashing sprays since, near the wall, neighbouring droplets of the
same size may exhibit completely different velocities. The method
presented in Sections 3–5 does not rely on this assumption and
therefore, as will be demonstrated, it allows the accurate descrip-
tion of splashing sprays.

In this case, a truncated Gaussian spray distribution (see line
marked ‘inlet’ in Fig. 1) enters the domain from the left ðx ¼ 0Þ
and is freely transported through it. The right boundary ðx ¼ 1Þ is
modelled as a wall, on which the droplets break, lose mass and
momentum. A droplet that is rebound from the wall is assumed
to exhibit the velocity

V ¼ �aV 0; ð34Þ

the diameter

D ¼ bD0; ð35Þ

and the mass

M ¼ ð1� cÞM0: ð36Þ

The symbols with a prime represent the respective quantities of the
droplet before it hits the wall. The parameters a; b and c are related
to the coefficient of restitution, the partition of a droplet and the
loss of fluid mass (through deposition or sudden evaporation) on
the wall, respectively.

If the droplets in a spray are assumed to be spherical and of size
d, their mass, m, and their number, n, are related by
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d
2
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: ð37Þ

Extending model (34)–(36) to droplets of size d0 before and d after
splashing yields

v ¼ �av ; d ¼ bd0; m ¼ ð1� cÞm0: ð38Þ

Relation (38)2,3 and (37) can be used to obtain the splashing
condition

n ¼ 1� c
b3 n0; ð39Þ

a relation between the number of droplets before and after splash-
ing. Consequently, droplets of diameter d0 (or surface s0) and veloc-
ity v 0 are splashed into 1�c

b3 droplets of diameter bd0 (or surface b2s0)
and velocity �av 0.

Denoting the number of incident droplets of surface between s0

and s0 þ ds0 and velocity between v 0 and v 0 þ dv 0 by fþðv 0; s0Þdv 0ds0

and those that are reflected by f rðv ; sÞdvds, relation (39) can be
transformed into the splashing condition

f rðv ; sÞdvds ¼ 1� c
b3 fþðv 0; s0Þdv 0ds0;

v ¼ �av 0; s ¼ b2s0:
ð40Þ

Eq. (40)2 and (40)3 can be used to transform (40)1 into

f rðv; sÞdvds ¼ �1� c
ab5 fþ �v

a
;

s

b2

� �
dvds: ð41Þ

Using this expression for all droplet sizes, it is tacitly assumed that
the splashing of all droplets can be described with the same param-
eters a; b and c. This simple model was chosen for clarity reasons
but more advanced splashing models can be found, for example in
Garcia Rosa et al. (2006) or Cossali et al. (2005). These more realistic
models lead to splashing parameters that depend on the velocity
and size of incident particles. Moreover, splashing depends directly
on the conditions on or in the vicinity of the wall (cf. Rioboo et al.,
2002). In the case of a dry wall, at least the wall temperature and
the wall roughness are of relevance. If a liquid film forms on top
of the wall which is usually changing in thickness, the mechanism
of the splashing are completely changed (cf. Roisman and Tropea,
2002). The considerations of these influences on the splashing is
not intended in this work, because with more refined splashing
models, which in fact is a three-dimensional process, the one-
dimensional model (3) cannot be improved anyway. Nevertheless,
it has to be remarked that in a three-dimensional setting, the
splashing parameters would describe the behaviour of the droplets
close to the wall. The heavy interaction between incident and
splashed droplets away from the wall (cf. Kyriopoulos et al., 2008)
can be captured by collision, coalescence and breakup models,
which are part of the general kinetic spray Eq. (1).

With relation (41) it is possible to compute the moments after

splashing, MðkÞr
K;L , from the moments, MðkÞþ

K;L , and parameters

a1
ðkÞ;U

1
ðkÞ; a

2
ðkÞ;U

2
ðkÞ

n o
before splashing for all sections k ¼ 1; . . . ;N.

To give an example of the exact relation between moments and
parameters before and after splashing the derivation for MðkÞr

0;0 is
illustrated. First, expression (41) is substituted into the definition
of MðkÞr

0;0 (see (9)) which yields

MðkÞr
0;0 ¼

Z siþ1

si

Z 1

�1

1� c
ab5 fþ �v

a
;

s

b2

� �
dv ds: ð42Þ

(42) is then transformed by a change of variables into the integral
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MðkÞr
0;0 ¼

Z siþ1=b
2

si=b
2

Z 1

�1

1� c
b3 fþðu; tÞdudt;

with u ¼ �v
a

and t ¼ s

b2 :

ð43Þ

It is important to note that in expression (43) the interval
½si=b

2; siþ1=b
2½ does not necessarily agree with the fixed sections

chosen for the incident spray. Therefore, the moments related to
the reflected droplets have to be computed from moments and
parameters of more than one section.

It should also be noted that in this model the splashing is as-
sumed to take place instantaneously, i.e. no special time or length
scale is introduced for the splashing process.

It may also be of interest that, from the numerical point of view,
the splashing condition has the character of both an outlet and an
inlet condition applied at the same position in real space.

The procedure to compute the splashing at the right wall is
structured in the following way:

(1) From the quadrature parameters in the cell next to the wall
the approximate NDF of the incident droplets, ~fþ, is com-
puted according to
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where the parameters follow from

aþk;j ¼ aj
k if Uj

ðkÞ positive;

aþk;j ¼ 0 otherwise:

(
ð45Þ

They are saved in a ghost cell on the right side of the wall.
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Fig. 3. Droplet distribution; splashing with parameters ða; b; cÞ ¼ ð0:9;0:5;0:1Þ and
ða; b; cÞ ¼ ð0:9;0:7;0:1Þ; 20 sections and 100 cells; position x ¼ 0:9.
(2) The moments of the reflected droplets MðkÞr
K;L and the quadra-

ture parameters are computed with relations like (43) and
also saved in the ghost cell.

(3) The fluxes over the left boundary of the ghost cell are com-
puted from the moments and quadrature parameters of the
reflected droplets.

Fig. 1 depicts the steady state solutions of the number of drop-
lets in a section, MðkÞ

0;0ðsÞ (called ‘droplet distribution’) obtained for
f5; 10; 20g sections. They are compared with the Lagrangian calcu-
lations for the parameter set ða; b; cÞ ¼ ð0:9;0:7;0:1Þ. The number
of cells is not varied because the spray is freely transported in
the computational domain. Only at the boundary is the spray dis-
tribution changed. The high peak on the left side represents the
splashed spray and is moving away from the wall (see averaged
velocity distribution in Fig. 2), whereas the smaller peak on the
right, agreeing with the inlet distribution (dashed line), is moving
towards the wall. It is observed that for this test case the Lagrang-
ian and Eulerian solutions for 10 and 20 sections are very close to
each other. Reduction of the number of sections to five results in
some discrepancies, but the qualitative behaviour of the moment
method persists. The sensitivity of the method was studied for
the change of parameters ða; b; cÞ. In Figs. 2–4 the droplet distribu-
tions are plotted versus the droplet surface at positions x ¼ 0:9 for
the sets of parameters ða; b; cÞ ¼ fð0:5;0:7;0:1Þ; ð0:9;0:5;0:1Þ;
ð0:9;0:7;0:5Þg. Each set of parameter is compared with its Lagrang-
ian solution and with the solutions shown in Fig. 1. In the lower
plot of Fig. 2 the distribution of averaged droplet velocity,
MðkÞ

3=2;1=MðkÞ
3=2;0, is also shown.

Fig. 2 illustrates what happens when droplets are reflected ine-
lastically on a wall. The reduction of the absolute velocity value
(lower part of Fig. 2) on the wall leads to an increase in the number
density of the splashed droplets (upper part of Fig. 2), an obvious
consequence of the mass conservation. The comparison between
Lagrangian and Eulerian calculations shows good agreement for
this deceleration effect and also the average velocities agree with
those expected from the model in (34).

The breakage of the droplets is determined by the parameter b.
Smaller values of this quantity result in more but smaller daughter
droplets after splashing. This behaviour is shown in Fig. 3 for the
Lagrangian and the Eulerian calculations.
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The model in (40) also includes a parameter, c, that allows the
consideration of mass deposition on the wall or sudden liquid
evaporation due to a hot wall. For large values of c a large amount
of liquid mass is taken from the system. In Fig. 4 Lagrangian and
Eulerian calculations are compared for two different values of c.
The Eulerian results recover the accurate Lagrangian solutions
nicely.

6.2. Test case: crossing and evaporating spray

The phenomenon of droplet evaporation is dealt with in a vast
amount of literature on single droplets or sprays (for an overview
see Sirignano, 1999). For sprays, Laurent and Massot (2001), Lau-
rent et al. (2004), Dufour and Villedieu (2005) and Schneider
et al. (2008) have shown that the sectional method can capture
evaporation very accurately with general evaporation models.
However, for a configuration where two evaporating spray distri-
butions are crossing each other, the sectional method as well as
all other Eulerian methods for the prediction of sprays, fail to pre-
dict at least qualitatively the correct solution of the kinetic spray
equation.

The method presented in Sections 3–5 is tested in a configura-
tion in which two truncated Gaussian spray distributions (see inlet
in Fig. 5) with different initial velocities ðvL ¼ 1; vR ¼ �2=3Þ at
x ¼ 0 and x ¼ 1 are transported in real space, x 2 ½0; 1�, towards
each other. The two initial spray distributions evaporate according
to the d2-law, i.e. they are shifted towards s ¼ 0 (see (46)). In this
model, the droplet drag force as well as heating, breakage and col-
lision of droplets arising in (3) are assumed to be absent. With
these assumptions the spray Eq. (3) reduces to

@ðf Þ
@t
þ @ðvf Þ

@x
� Ev

@ðf Þ
@s
¼ 0: ð46Þ

In Fig. 5 the droplet distributions ðMðkÞ
0;0ðsÞÞ are shown for steady cal-

culations of the moment method with ns ¼ f5;10;20g sections and
nx ¼ f50;100;200g cells at positions x ¼ 0:5 and x ¼ 0:9. In addi-
tion, the inlet distributions (dashed lines) are depicted as well as
the Lagrangian solutions (solid lines) which are regarded as accu-
rate reference solutions. In the upper plot of Fig. 5 the two distribu-
tions have evaporated and overlap. This behaviour indicates that
the distributions are crossing each other. If the method could not
predict this behaviour, a delta shock would have formed at the
point where the distributions first cross ðx ¼ 0:6Þ. This shock would
have moved according to the relation between the momenta of
droplets in each section. All droplets that arrive at the delta shock
would have concentrated there and, as the velocity of the left
distribution is larger, no droplet coming from the right of the com-
putational domain could have reached x ¼ 0:5. Indeed, the lower
plot in Fig. 5 confirms the proposition that the two jets cross each
other. The left peak represents the droplets coming from the left
of the computational domain whereas the right peak originates
from the right and has evaporated only slightly. As droplets coming
from the left are existing at position x ¼ 0:9, they must have crossed
the spray distribution coming from the right.

Calculations with five sections are very crude but can still cap-
ture the evaporation and crossing effect of the spray. Using a larger
number of sections improves the results considerably but still, as
shown in the lower plot of Fig. 5, there is a discrepancy between
the Lagrangian and Eulerian calculations. This defect of the mo-
ment method may originate from either numerical diffusion in sur-
face space or follow from small numerical interactions between the
two distributions crossing each other in the middle of the compu-
tational domain. The analysis of this behaviour and the improve-
ment of the numerical procedures will be carried out in future
study. The parameter study of the discretisation in real space gives
the expected result. With smaller cell sizes the differences between
Eulerian and Lagrangian calculations reduce.

By changing the values for Ev the sensitivity of the numerical
method was tested. The droplet distributions at positions x ¼ 0:5
and x ¼ 0:9 are depicted in Fig. 6 for 10 sections and 100 cells.
For smaller evaporation numbers the droplets are evaporated more
slowly and remain longer in the computational domain. These tests
show no correlation between accuracy of the Eulerian method and
evaporation number.
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6.3. Test case: crossing sprays affected by drag

It was shown by Laurent and Massot (2001), Laurent et al.
(2004), Dufour and Villedieu (2005) and Schneider et al. (2008)
that the sectional method can accurately predict the behaviour of
a spray which is affected by drag and gravity forces. In a polydis-
perse spray which is accelerated (or decelerated) by the surround-
ing gas, the forces on the droplets, and consequently their
velocities, are correlated, among other things, with the size of a
droplet.5

For the sectional method, droplets collected in one section exhi-
bit the same velocities. Therefore, it is expected that the more sec-
tions come into play for the discretisation of size space the more
accurate the dependence of the velocity on the size that is mod-
elled with the sectional method. It is shown in this test case that
the combination of the sectional method with the quadrature-
based moment method from Desjardins et al. (2008) does not
change the ability of the method to capture the phenomenon of
drag affecting a spray.

In this test configuration two truncated Gaussian spray distri-
butions are moving towards each other starting at the ends of
the computational domain, x 2 ½0;1�. During the crossing process,
they are affected by a Stokes drag force which results from the
velocity difference between the spray and a non-moving gas. This
drag test case can never reach a steady state, because those
5 In general, the acceleration (or deceleration) of a droplet is not only determined
by its size but also by its mass density, its shape and its dynamic behaviour. In the
Stokes drag model in (2) only differences in size and mass density result in different
droplet accelerations. Here, the droplets are assumed to have the same mass density.
droplets that are stopped by the gas before leaving the computa-
tional domain accumulate at a certain position until the computa-
tion stops. Smaller droplets decelerate faster and stop closer to
where they come from. This phenomenon is commonly called size
segregation of droplets.

In Fig. 7 the Eulerian results of the drag test case are depicted
and compared to the calculations using a ‘reference’ Lagrangian
method. The number of sections and cells are varied according to
ns ¼ f5; 10; 20g and nx ¼ f50; 100; 200g, respectively and the
upper, middle and lower plot refer to the results at positions
x ¼ 0:5; x ¼ 0:7 and x ¼ 0:9, respectively.

For all results shown in the three plots in Fig. 7, the droplet dis-
tributions are much higher than the initial distribution. The reason
surface [−]

Fig. 7. Droplet distribution at x = 0.5 (upper), x = 0.7 (middle) and x = 0.9 (lower);
crossing sprays affected by Stokes drag with Stmax ¼ 2:43; parameter study of the
number of sections and cells.
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for this behaviour is, first, the deceleration of droplets which leads
to an accumulation and secondly, the overlap of the crossing
distributions.

It is also observed that all graphs in Fig. 7 exhibit an asymmetry
in the distribution. This effect is due to the drag force. Small drop-
lets on the left sides of the graphs experience a strong deceleration
and stop before they leave the computational domain. The steep
gradient, observed in all graphs, marks the border between
stopped droplets (left side of the steep gradient) and moving drop-
lets (right side of the steep gradient). In the plot for x ¼ 0:9, on the
left side of the steep gradient, there are droplets which have not
stopped and which agree very well with the droplet distribution
of the inlet distribution. Those droplets belong to the distribution
coming from the right.

The parameter study of the moment method for the number of
sections and cells shows the expected results. Increasing the dis-
cretization in size and real space decreases the difference between
the Lagrangian and Eulerian predictions.

In the plot for x ¼ 0:9 the improvement due to the increase from
50 to 200 cells is very pronounced. This behaviour can be explained
by the fact that the increase of maximum droplet density between
x ¼ 0:5 and x ¼ 0:7 is much smaller than between x ¼ 0:7 and
x ¼ 0:9. This strong gradient of the droplet density in real space re-
quires a finer x-discretisation in order to obtain a more accurate
solution. For the variation of the number of sections it is observed
that there is only a small difference between solutions using 10
and 20 sections. With five sections the qualitative behaviour of
the drag effect can be captured.

The Stokes number of the largest droplets, Stmax, is varied accord-
ing to Stmax ¼ f1:22;2:43;3:64g to test the sensitivity of the method.
In Fig. 8 the Eulerian solutions with 20 sections and 200 cells are
compared with the Lagrangian results at position x ¼ 0:7. For the
smallest Stmax the concentration of droplets is very pronounced for
both, the distribution moving to the left (left peak) and the distribu-
tion moving to the right (right peak). It is also observed that the gra-
dients in size and real space are the steepest. This behaviour is due to
the strong deceleration and standstill of the droplets. The Eulerian
results can predict the left peak very well but the right peak is not
captured correctly. The reason may be a discretisation of the size
and velocity space which is not fine enough. For larger Stmax the
Lagrangian results are recovered very well.

7. Conclusions

It is demonstrated in a one dimensional setting that the new
moment method can describe polydisperse sprays that splash on
a wall and that cross each other while they are evaporating or
experiencing a Stokes drag force. So far, Eulerian methods, like that
of Gelbard et al. (1980), Domelevo (2001), Laurent and Massot
(2001), Laurent et al. (2004) or Dufour and Villedieu (2005) were
only able to describe the dispersion with respect to the size vari-
able, then being able to capture accurately evaporation, coales-
cence and drag of a polydisperse spray. On the other hand,
Desjardins et al. (2008) took into account the dispersion with re-
spect to the velocity variable, allowing the description of crossing
and splashing monodisperse sprays. The moment method derived
and tested here considers both variables and is therefore able to
predict all combinations of polydisperse and crossing effects of
sprays.

In the cases of splashing and drag, the comparison of the new
moment method with accurate Lagrangian calculations reveals a
convincing agreement even for small numbers of sections. The re-
sults for splashing and drag in Section 6 indicate that 5–10 sections
are enough to describe polydisperse effects. Using more sections,
the issue of computational costs arises in the application of the
new method, particularly when it is extended to higher dimensions
in real space. For the evaporation test case, the discretisation of the
size space with a small number of sections leads to qualitative, cor-
rect results but unfortunately some discrepancies between Euleri-
an and Lagrangian calculations are observed. This behaviour
requires further study to improve the numerical procedures for
the evaporation part of the method.

A new but academic splashing model was proposed and
adapted to the moment method in Section 6. It is indicated how
this simple model can be extended to realistic splashing configura-
tions. However, the heavy interaction between the incident and
splashed droplets away from the wall requires the consideration
of coalescence and breakup. These phenomenon have not yet been
tested with this method, but their consideration is, in principle,
possible. Laurent et al. (2004) have studied coalescence and break-
up using the sectional method.

Obviously, the new moment method still awaits the extension
to higher dimensions in real space and finer discretisation of the
velocity space (see parameter I in (11)). Its ability to capture the
polydisperse nature of sprays as well as the coexistence of two
ðI ¼ 2Þ droplet velocities at one location is clearly demonstrated.
Despite the strong assumptions made in this work, it opens a
new way of describing unsteady spray phenomena with Eulerian
methods.
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